Analyzing Environmental Performance of New Zealand Tannery



TASMAN

INSPIRING NEW LEATHERS FROM NEW ZEALAND

# Eylem Kiliç, Sarah J. McLaren, Geoff Holmes\* Pere Fullana-i-Palmer, Rita Puig



12 <sup>th</sup> Asia International Conference On Leather Science And Technology 18 October, 2022 Palmerston North, New Zealand



# Contents

- Aim of the study
   ➤ Where to start?
- 2. Inventory data collection
  - What issues have risen?
- 3. Modelling of chemicals
- 4. Life Cycle Impact Assessment Results
- 5. Comparison of results

# Aim of The Study

## Study Overview

• What is the study about?

Environmental evaluation of waterproof shoe leather production using Life Cycle Assessment.

• The goal of this study:

Determination of the "hotspots"



# Aim of The Study

## Where to start? Data collection period June 2018- May 2019

| Product type          | <b>m2</b> | %     | number of hides |
|-----------------------|-----------|-------|-----------------|
| Finished Uph          | 178032    | 4.4%  | 41402.8322      |
| Crust Uph             | 315551    | 7.8%  | 73383.96507     |
| Finished Shoe         | 568994    | 14.0% | 132324.1047     |
| Crust shoe            | 26241     | 0.6%  | 6102.443114     |
| Splits                | 9157      | 0.2%  | 2129.525205     |
| Gloving (from bovine) | 9690      | 0.2%  | 2253.582139     |
| Wet blue Bovine       | 1753334   | 43.1% | 407752          |
| Wet blue Ovine        | 101537    | 2.5%  | 156211          |
| Pickle Ovine          | 337447    | 8.3%  | 519149          |
| Salted Ovine          | 196266    | 4.8%  | 301947          |
| Salted Hides          | 374964    | 9.2%  | 87201           |
| Salted Collagen       | 196961    | 4.8%  | 45804.87442     |

## TASMAN Typhoon shoe leather

Functional unit= 1 raw hide (32.45 kg) to produce finished typhoon leather

### Inventory data collection: Production processes





#### Inventory data collection: Production processes



# °

### Inventory data collection: Production processes





#### Inventory data collection: Wastewater treatment



### Inventory data collection: Transportation processes



### What issues have risen?: Allocation of Co-products



### PRODUCT ENVIRONMENTAL FOOTPRINT CATEGORY RULES

Leather

#### Version for Review Panel

1 March 2018 Valid until 31 December 2020

#### Table 25 Allocation factors for bovine leather

| From         |                                                        | Ra                                                                                    | w    | Semi-<br>processed<br>products                                  |                                                 | Raw                                      |                                          |                          |  |  |
|--------------|--------------------------------------------------------|---------------------------------------------------------------------------------------|------|-----------------------------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------------------------|--------------------------|--|--|
| То           | Semi-<br>processed<br>products,<br>split, hair<br>burn | Semi- Serii-<br>processed products, full<br>split, hair substance,<br>saire hair burn |      | Semi-<br>processed<br>products, full<br>substance,<br>hair save | Crust or<br>Finished<br>Grain Split<br>Leathers | Finished<br>leather, split,<br>hair save | Finished<br>leather, split,<br>hair burn | Finished Sole<br>Leather |  |  |
| Grain Splits | 64%                                                    | 60%                                                                                   | 100% | 91%                                                             | 100%                                            | 60%                                      | 63%                                      | 100%                     |  |  |
| Flesh Splits | 36%                                                    | 31%                                                                                   | -    | -                                                               | -                                               | 31%                                      | 37%                                      | -                        |  |  |
| Hair         | _                                                      | 9%                                                                                    | -    | 9%                                                              | -                                               | 9%                                       | -                                        | -                        |  |  |

### What issues have risen? Lack of data on energy use

- ISSUE: no separate data available FOR
  - $_{\circ}$  Natural gas consumption
  - Diesel consumption
  - LPG consumption
- RESOLUTION: Allocation from the general natural gas use

| ANNUAL PRODUCTION     |           |       |  |  |  |  |  |
|-----------------------|-----------|-------|--|--|--|--|--|
|                       | m²        | %     |  |  |  |  |  |
| Finished Upholstery   | 178032    | 4.4%  |  |  |  |  |  |
| Crust Upholstery      | 315551    | 7.8%  |  |  |  |  |  |
| Finished Shoe         | 568994    | 14.0% |  |  |  |  |  |
| Crust shoe            | 26241     | 0.6%  |  |  |  |  |  |
| Splits                | 9157      | 0.2%  |  |  |  |  |  |
| Gloving (from bovine) | 9690      | 0.2%  |  |  |  |  |  |
| Wet blue Bovine       | 1753333.6 | 43.1% |  |  |  |  |  |
| Wet blue Ovine        | 101537    | 2.5%  |  |  |  |  |  |
| Pickle Ovine          | 337447    | 8.3%  |  |  |  |  |  |
| Salted Ovine          | 196266    | 4.8%  |  |  |  |  |  |
| Salted Hides          | 374964    | 9.2%  |  |  |  |  |  |
| Salted Colllagen      | 196960.96 | 4.8%  |  |  |  |  |  |
|                       | 4068173   | 100%  |  |  |  |  |  |



### What issues have risen? Lack of data on energy use

• **RESOLUTION: Allocation from the ANNUAL natural gas, diesel and LPG consumption** 

### Data collection period June 2018- May 2019

|        | Electricity, | Natural Gas, | Water input, | Landfill waste, | Pondoring T | Diagol I |      | BOD                   | $COD(a/m^3)$ | 0&G<br>(g/m3)       | TSS    | Sulphide | Chromium - Total $(q/m^3)$ |
|--------|--------------|--------------|--------------|-----------------|-------------|----------|------|-----------------------|--------------|---------------------|--------|----------|----------------------------|
| 18-May | x 50650      | 3 5840       | 50276        | 226.2           | 1064        | 6206     | 1840 | (g/111 <sup>3</sup> ) | COD (g/III°) | (g/m <sup>o</sup> ) | (g/m°) | (IIIg/I) | 10tai (g/111°)             |
| 18-Ju  | n 54154      | 4 6717       | 7 48427      | 165.8           | 628.507     | 7252     | 1040 | 2791                  | 6473         | 879                 | 3209   | 21       | 150                        |
| 18-Ju  | il 53887     | 9 6006       | 48558        | 187.66          | 607.72      | 4851     | 1053 | 2404                  | 5735         | 519                 | 2915   | 29       | 149                        |
| 18-Au  | g 52624      | 5 586:       | 1 42450      | 231.14          | 1252.49     | 3292     | 1360 | 2126                  | 4570         | 397                 | 1857   | 45       | 87                         |
| 18-Sej | p 48803      | 0 5260       | 39010        | 175.24          | 445.74      | 5401     | 960  | 1891                  | 4136         | 186                 | 1053   | 36       | 90                         |
| 18-Oc  | t 49706      | 7 5992       | <u>45844</u> | 247.08          | 533.9       | 4102     | 1320 | 1972                  | 4115         | 180                 | 859    | 38       | 53                         |
| 18-No  | v 53206      | 9 5508       | 36180        | 211.1           | 176.052     | 6676     | 973  | 2199                  | 4473         | 156                 | 876    | 55       | 62                         |
| 18-Dec | 39327        | 9 4153       | 3 26014      | 182.46          | 471.226     | 3001     | 827  | 2077                  | 4321         | 261                 | 1255   | 57       | 54                         |
| Jan-19 | 9 45124      | 1 376        | 1 42771      | 234.71          | 162.262     | 6302     | 827  | 2096                  | 4808         | 362                 | 1671   | 81       | 80                         |
| Feb-19 | 9 50389      | 3 5016       | 5 32743      | 197.68          | 144.376     | 9350     | 987  | 2348                  | 4630         | 190                 | 1040   | 80       | 40                         |
| Mar-19 | 9 57468      | 4 4924       | 48471        | 255.69          | 580.721     | 5606     | 1000 | 2417                  | 5532         | 252                 | 2032   | 78       | 60                         |
| Apr-19 | 9 50744      | 8 575        | 1 43154      | 199.02          | 62.108      | 5024     | 840  | 2658                  | 6285         | 327                 | 3088   | 55       | 115                        |
| May-19 | 9 61156      | 4 6159       | 9 48122      | 251.41          | 551.962     | 6297     | 1890 | 2887                  | 7386         | 469                 | 2954   | 71       | 86                         |

#### **ASSIGNED TO 14% shoe leather production**



### **Chemical Modelling: Assignment of chemicals in database**

#### PRODUCT ENVIRONMENTAL FOOTPRINT CATEGORY RULES

Leather

#### Table 42 Chemicals modelling

Representative Data Process from database Category Family Composition substance quality Adipic acid production | technology mix | production mix, at Adipic 100,0% plant | 100% active substance {RER} [LCI result] Citric acid production | technology mix | production mix, at 50,0% plant | 100% active substance {RER} [LCI result] Hydroxy-carboxylic Citric Tap water | technology mix | at user | per kg water {EU-28+3} acids (Deliming 50,0% [LCI result] agents) Lactic acid production | technology mix | production mix, at 80,0% plant | 100% active substance (RER) [LCI result] Lactic Tap water | technology mix | at user | per kg water (EU-28+3) 20,0% [LCI result] Hydrochloric acid production | technology mix | production 30,0% mix, at plant | 100% active substance {RER} [LCI result] Hydrochloric acid Tap water | technology mix | at user | per kg water (EU-28+3) 70,0% [LCI result] Phosphoric acid | fertiliser grade, dihydrate process | at Acids 17,0% Strong mineral plant| per kg (EU-28+3) [LCI result] Phosphonic acid acids Tap water | technology mix | at user | per kg water (EU-28+3) 83,0% [LCI result] Phosphoric acid | fertiliser grade, dihydrate process | at Phosphoric acid 100,0% plant| per kg {EU-28+3} [LCI result] Sulphuric acid production | technology mix | production mix, Sulfuric acid 100,0% at plant | 100% active substance {RER} [LCI result] Acetic acid production | technology mix | production mix, at 98,0% Strong organic acids plant | 100% active substance (RER) [LCI result] Acetic acid (fixing agent) Tap water | technology mix | at user | per kg water {EU-28+3} 2.0% [LCI result] Strong organic acids Adipic acid production | technology mix | production mix, at Oxalic acid dehydrate 100,0% (clearing agent) plant | 100% active substance (RER) [LCI result] Formic acid production | technology mix | production mix, at Formic acid 85,0% plant | 100% active substance (RER) [LCI result]

Version for Review Panel 1 March 2018 Valid until 31 December 2020



## What issues have risen?: Assignment of chemicals in database

### • ISSUE: in LCA database no data available for

- Polyurethane dispersion
- Synthetic tannins
- Natural tannins
- Basic chromium sulfate
- Synthetic fatliquors

Polyurethane dispersion | Technology mix | Production mix, at plant | 40% in water {GLO} [LCI result]

Syntetic tannins and retanning agents production | technology mix | production mix, at plant | 100% active substance {RER} [LCI result]

Natural tannins extracted from chestnut production | technology mix | production mix, at plant | 100% active substance {RER} [LCI result]

Basic chrome sulfate production | technology mix | production mix, at plant | 100% active substance {ZA} [LCI result]

Synthetic fatliquors production | technology mix | production mix, at plant | 100% active substance {RER} [LCI result]

### <u>RESOLUTION:</u> Assignment of similar/proxy processes

- Polyurethane dispersion= Polyurethane based adhesive
- Synthetic tannins= **X**
- Natural tannins=**X**
- Basic chromium sulfate= Chromium oxide
- Synthetic fatliquors= Lubricating oil (petrochemical based), silicone (silicone based)

Introduction of inventory data into software (Massey University)



### LCA Modelling Gabi software





### LCA Modelling Gabi software



## LCA Modelling Gabi software

| Additional input plan <lc> [Plans] DB Plans</lc>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _ <b>D</b> _ X   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| <u>O</u> bject <u>E</u> dit <u>V</u> iew <u>H</u> elp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arch Q           |
| Name     Native     Additional input plan     Source     Life cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~                |
| Search Q Additional input plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l input plan 🛞 📩 |
| Additional input plan<br>Additional input proc<br>G diesel converter<br>C market for propane,<br>S MD to kg converter<br>C natural gas converter<br>Polyethylene Linear L<br>Polyethylene Linear L<br>Polyethylene Linear L<br>Polyethylene Linear L<br>D ackaging data is from<br>automotive leather (4.4%<br>n product range), wil be<br>replaced when we have<br>the annual total.<br>AU: Thermal energy [=]<br>GLO: market for<br>propane, burned in<br>GLO: market for<br>diesel, burned in<br>GLO: market for<br>diesel, burned in<br>D COULD ADDIE<br>C C COULD ADDIE<br>C C COULD ADDIE<br>C C COULD ADDIE<br>C C C C C C C C C C C C C C C C C C C |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~                |
| Instances: 8 Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >                |
| System: No changes.         Last change: System5/09/2019 5:29:08 p.m.         GUID: {6D527DB0-E7B3-40D8-8B55-CA20836FEAF8}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .::              |

Typhoon leather production system -- DB Results \*

Object Edit View Tools Help

@₩₩₫✔ 습⊆?

Name Typhoon leather production system

#### 👔 ILCD recommendations 🎧 LCIA - CML 2001 (Nov.10) 🎧 LCIA - TRACI 🎧 LCIA 🎧 ReCiPe 📈 Results 🕞 i-Report 🎧 + LCIA - CML 2001 (Nov.10) 'Typhoon leather production system <LC>' 'Typhoon leather pro...' 🕨 'Additional input plan...' 🕨 'Typhoon leather production system <LC>' 'Typhoon leather production system <LC>' Global Warming Potential m â m щ -Equiv.] GWP 100 years AP FP ODP, steady state Additional input pla ž Acidification Potential [kg C02ğ 6.4e-5 Acidification Potential [kg SO2-Typhoon leather pr Eutrophication Potential 툇 4 Ē ntial 4.8e-5 Typhoon leather pr ntial Potential [kg 3 -Ozone Layer Depletion Po 1 Pot 3.2e-5 đ Typhoon leather pr 2 letion Abiotic Depletion element g 1.6e-5 1-Typhoon leather pr č utrophication Abiotic Depletion fossil [M 0 -0.0e-5 Typhoon leather pr Global Ē EU-28: GLO: m.. Finis... Reta... Rest Finis... Reta.. Fini... Ret... Total Total Total Rest Total Freshwater Aquatic Ecoto Tan.. AU: Th... GLO: m.. Addi... Limi... Addit... Limi... Tann.. Ad... V Typhoon leather pr 🖃 📊 Human Toxicity Potential 'Typhoon leather production system <LC>' 'Typhoon leather production system <LC>'> 'Typhoon leather production system <LC>'> 'Typhoon leather production system <LC>' Typhoon leather pr m ŵ m DCB Equiv ADP elements ADP fossil FAETP inf. HTP inf. Typhoon leather pr [LM] lissof ğ BCB ടി 32 8.0e-4 -Pot. 2 Typhoon leather pr 614.4 <u>\$</u> 25.6 12.8 6.4e-4 Ecotoxicity ntial Depletion 1 9.6 19.2 Typhoon leather p 4.8e-4 409.6 Pot 6.4 12.8 3.2e-4 204.8 city 3.2 6.4 1.6e-4 atic Abiotic Dep õ 0.0e-4 0.0 Aqu Le Total Lim... Та... Rest Total Fini... Ret... Rest Total Limi... Tan... Rest Total Fini... ater Å Fini... Ret... Wa.. Add... Lim... Tan.. Fini... Ret.. Wa.. Add...





System: Changed.

Last change: System6/09/2019 11:36:48 a.m. GUID: {0000000-0000-0000-0000-00000000000}}



\_ 0 X

m

Lim... Ta...

Ret...

Tan..

Limi...

Rest

Rest

fin

📄 🏛



















#### Global Warming Potential (GWP)



GWP 100 years



## Environmental benefits provided by New Zealand system

\* New Zealand has an electricity grid mix with a high proportion of renewable primary energy, comprising nearly 78% of the total electricity supply.



Electricity Mix - New Zealand - NZ - 2015

\*New Zealand system provide some environmental benefits due to application of green fleshing, which avoids the need for preservation of raw hides, and the soaking process, resulting in chemical-free fleshing waste.

### Environmental benefits provided by New Zealand system

\*\*New Zealand system provide some environmental benefits due to application of **green fleshing**, which avoids the need for preservation of raw hides, and the soaking process, resulting in chemical-free fleshing waste.

\* New Zealand's farming practices, mainly based on extensive farming, are a distinguishing feature in terms of animal welfare. However, the PEFCR is currently limited to assessment of a specified set of environmental impacts and does not include wider sustainability aspects such as social issues and animal welfare.

## Concluding remark

- The waste management stage contributes nearly 95% to the climate change (biogenic) impact category, mainly due to greenhouse gas emissions from landfilling of solid wastes.
- \*\* Production process data regarding **vegetable tannins** and **synthetic tannins** are missing !

\*\*\* In particular, prioritising the optimisation of chemical use and promoting
energy recovery in landfill – or alternative end-of-life management technologies could mitigate multiple environmental impacts associated with leather production.
\*\*\* This is an ongoing study so modelling and assumptions may change.

